
www.syntegris.de

Are regular expressions slow?
Tested, Quantified, Commentary, Recommendations

Author: Sven Weller

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

About me

SVEN-UWE WELLER

svenweller.wordpress.com

SvenWOracle

COMPANY

BLOG

TWITTER

MAIL Sven.Weller@syntegris.de

HOBBIES

Danke

SYNTEGRIS INFORMATION SOLUTIONS GMBH

HERMANNSTRASSE 54-56

63263 NEU-ISENBURG

FON (06102) 29 86 68

FAX (06102) 55 88 06

INFO@SYNTEGRIS.DE

SYNTEGRIS.DE

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Current pet projects

WANT TO KNOW MORE? – TALK TO ME

• Performance analysis tool

• Generate PLSQL Flamegraphs

• Input = dbms_hprof trace

• Output = interactive SVG

• Target group: developers

Human readable audit trail

• based upon Connor

McDonalds Audit Generator

• add context and subcontext

data (tenents)

• automatic FK resolve

• Single audit table only

• JSON to store dependend

audit data

• custom hook text builder

• sophisticated generator setup

FLAPS

Flamegraphs

for APEX and PLSQL

https://svenweller.files.wordpress.com/2021/04/svg_pdfgen_with_flaps.png
https://connor-mcdonald.com/2020/08/04/level-up-your-audit-trigger-game/

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Motivation

Are Regular Expressions Slow?
Tested, Quantified, Commentary, Recommendations

Everybody says that.

Is this is fact?

Is it a myth?

How slow?

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Oracle Regular Expression

• regexp_count

• regexp_instr

• regexp_like

• regexp_replace

• regexp_substr

https://svenweller.files.wordpress.com/2020/10/syntax_regexp_substr.gif
https://svenweller.files.wordpress.com/2020/10/syntax_regexp_replace.gif

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Tests Overview

EXAMPLE TEST DATA

EIg:629795:WxpRKl

cTSX:304863:xQewB

vZeb:447055:hhbDQv

kPml:236160:KuM

MEbTTz:390157:AiKI

QeXt:274766:JqD

KBDFb:498907:AZAB

uWOviJ:277196:QeOm

zNRBy:883826:NHhu

IUnAjI:52019:eaFCca

…

100000 rows of random text

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Tests Overview

GENERIC TEST SETUP

SQL
PLSQL

SQL Expression PLSQL Expressioneither or

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Test Size

6 main test scenarios

Test 0 - baseline

Test 1 - fetch section 1

Test 2 - fetch section 2

Test 3 - fetch section 3

Test 4 - greediness comparison

Test 5 - effect of string size

100000 strings

MASSIVE # OF FUNCTIONS CALLS

x 20 iterations
x 3 measurements

x 40 tests

x 5 environments

> 1 billion function calls

x 3 different expressions per

scenario (substr, regxp_subst,

regexp_replace,…)

x 2 SQL vs. PLSQL

1 billion = 1.000.000.000

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Environments

I assume that for regular expressions CPU power might be an important factor, therefore I list the
processors for the systems where I know it.

Environment 1: 11.2.0.4 database on an old HP-UX server (CPU unknown)

Environment 2: 18.3 database on an ODA X7-2S
ODA=Oracle Database Appliance.
"S" is the smallest Oracle engineered system you can buy. Excellent performance for your money. The X7-
2S version features a 10-core Intel® Xeon® Silver 4114 2.2 GHz processor.

Environment 3: 19.1/19.2 database on LiveSQL (CPU unknown but likely the same as on all OCI)
There were some limitations on LiveSQL that prevented me for running all the tests there. See the
environment comparison later on.

Environment 4: 19.1 database on Oracle Cloud - Trial version
I used the Frankfurt Data Center, we get to use 1 or 0.5 OCPUs (Oracle Compute Units) for the trial cloud.
I think at that time an Intel(R) Xeon(R) E5-2699 CPU with 2.20GHz was used.

Environment 5: 19.1 database on my old MacBook Pro inside the Oracle Developer VM 19.3. The
MacBook uses a Intel Core i7 2.5GHz. There is some overhead to be expected because of the Virtual Box
environment, but this could be similar for the cloud DBs.

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Test Results

ENVIRONMENT COMPARISON (2019)

Quick result: In general Oracle Trial Cloud was fastest by a tiny tiny margin, followed by LiveSQL.

One could argument that the basetime test had some random fluctuations that made LiveSql

look slower than it really was compared to Free Trial Cloud. ODA X7-2S came in strong third. Then

after a considerable gap the VM MacBook. By far the slowest was the 11g version on old HP-UX.

0,00

5,00

10,00

15,00

20,00

25,00

30,00

Test 0 Test 1.1b Test 2.1b

Environments

11.2.0.4 18.3 (ODA) 19.2 (LiveSQL) 19.1 (free cloud) 19.1 (MacBook - Dev VM 19.3)

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Tests Results

WHICH IS FASTER: REGEXP IN SQL OR PLSQL?

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

SQL PLSQL

7,80

8,00

8,20

8,40

8,60

8,80

9,00

9,20

9,40

9,60

9,80

10,00

1a substr 2a substr 3a substr 3b substr

substr + instr

SQL PLSQL

Quick result:

Equally fast (for regexp calls)

each bar = 2 million function calls

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

1a substr(txt, 1, instr(txt, ':') -1) 0,67 µs

1b regexp_substr(txt,'^[^:]+') 1,58 µs

2a substr(txt, vPos1, vPos2 - vPos1) 0,92 µs

2b regexp_substr(txt,'[^:]+',1,2) 3,37 µs

2c regexp_substr(txt,'\d+') 2,35 µs

2d regexp_replace(txt,'^[^:]+:([^:]+):.*$','\1') 9,08 µs

3a substr(txt, instr(txt, ':',1,2)+1) 0,85 µs

3b substr(txt, instr(txt, ':',-1)+1) 0,80 µs

3c regexp_substr(txt,'[^:]+',1,3) 4,62 µs

3d regexp_substr(txt,'[^:]+$') 12,29 µs

3e regexp_replace(txt,'^([^:]+:){2}') 10,40 µs

Tests Results

SUBSTR OR REGEXP?

0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00

1a

1b

2a

2b

2c

2d

3a

3b

3c

3d

3e

substr regexp_substr regexp_replace cTSX:304863:xQewB

Sample txt

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Knowledge gained

REMEMBER THIS

• substr and simple regexp

are extremly fast

(substr is faster)

• left anchored (^) is magnitudes

faster than right anchored ($)

Pictures from wikicommons: https://commons.wikimedia.org/w/index.php?curid=71414633

• regexp_replace usually is slower than

regexp_substr

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Knowledge missing

What are the dangerous

expressions?

NEW QUESTIONS

Why is the difference

between left and right

anchored so big?

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Regexp concepts

GREEDY QUANTIFIERS

Greedy means "try to grab as much as

possible".

Non-greedy means, stop as soon as you

encounter something that the next token of

the expression matches. +

*

+?

*?
There are more greedy quantifiers than just * and + . For example {1,} or even {9}

can suffer from the same issues (see backtracking).

one or more,

greedy

zero or more,

greedy

one or more,

non greedy

zero or more,

non greedy

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Regexp concepts

BACKREFERENCES - DEFINITION

Backreference means that we can refer back to a specific

part (a subexpression) tagged by parenthesis (). It is

possible to use a backreference in the expression itself

or as part of the replacement parameter in

REGEXP_REPLACE.

The second usage is encountered more often.

A backreference has a number which maps to the order

of the opening parenthesis "(".

If this is the expression: '^((\d)+)' then the

backreference \1 matches all digits at the start of the

string. And the backreference \2 matches a single digit

(multiple times).
Photo by Tobias Tullius on Unsplash

https://unsplash.com/@tobiastu?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/rear-view-mirror?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Regexp concepts

BACKREFERENCES - EXAMPLES

regexp_replace('The The cat and the dogdog played together. '

,'(\w+\s*?)\1+'

,'\1')

The cat and the dog played together.

regexp_replace('aabbccccddd1234'

,'(.)\1+'

,'\1') abcd1234

regexp_replace('12345ABCDE67890'

,'^((\d)+).*'

,'1)=\1; 2)=\2')

1)=12345; 2)=5

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Regexp concepts

THE PROBLEM: BACKTRACKING

Backreferences and greedy quantifiers can lead

to excessive backtracking!

.*.*=.* x=xxxxxxxxxxxxxxxxxxxx

https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/

Backtracking story gone bad:

Expression Text Regex engine steps

255

https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Regexp concepts

HOW TO AVOID EXCESSIVE BACKTRACKING

possessive quantifiers

Some regexp dialects (not Oracle) allow to use possessive quantifiers. A greedy quantifier like .* can be made possessive by adding a + . It

means the regexp engine, will not backtrack, after the match. This is useful in some situations to avoid unnecessary backtracking, especially for

not so greedy expressions like [^:]*+ that are nested inside other subexpressions.

The danger of possessive quantifiers is, that if the expression is copied from a regexp flavor that supports them to a regexp flavor that does

not support them, the non supportive engine might fall into the excessive backtracking trap. So instead of keeping the performance in check,

the opposite happens. Be aware of such constructs when you copy and adapt an example regexp expression to your system.

For more info about possessive quantifiers and atomic groups see: https://www.regular-expressions.info/atomic.html

Non backtracking subexpressions

Some regular expression dialects allow to declare non backtracking subexpressions.

For example MicroSoft .NET

Nonbacktracking Subexpression

The (?> subexpression) language element suppresses backtracking in a subexpression. It is useful for preventing the performance problems

associated with failed matches.

...

Lookbehind Assertions

.NET includes two language elements, (?<=subexpression) and (?<!subexpression), that match the previous character or characters in the input

string. Both language elements are zero-width assertions; that is, they determine whether the character or characters that immediately

precede the current character can be matched by subexpression, without advancing or backtracking.

(?<= subexpression) is a positive lookbehind assertion; that is, the character or characters before the current position must match

subexpression. (?<!subexpression) is a negative lookbehind assertion; that is, the character or characters before the current position must not

match subexpression. Both positive and negative lookbehind assertions are most useful when subexpression is a subset of the previous

subexpression.

https://docs.microsoft.com/en-us/dotnet/standard/base-types/backtracking-in-regular-expressions#Nonbacktracking

https://www.regular-expressions.info/atomic.html
https://docs.microsoft.com/en-us/dotnet/standard/base-types/backtracking-in-regular-expressions#Nonbacktracking

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Tests Results

GREEDINESS

0,00 10,00 20,00 30,00 40,00 50,00 60,00 70,00

.*:.*:
 .*?:.*?:

.*.*:.*:
.*?.*?:.*?:

.+:.+:
.+?:.+?:

Test 4.1 greedy vs. non-greedy

greedy non-greedy

13,00 13,50 14,00 14,50 15,00 15,50 16,00 16,50

^[^:]*:[^:]*:
^[^:]*?:[^:]*?:

^[^:]+:[^:]+:
^[^:]+?:[^:]+?:

Test 4.2 "not so" greedy vs. "not so" non-greedy

"not so" greedy "not so" non-greedy

.*: [^:]*greedy .*?:non-greedy „not so“ greedy

0,00

50,00

100,00

150,00

200,00

250,00

300,00

.*:.*: .*.*:.*: .*.*.*:.*:

greedy backtracking

.*.*.*:.*: 276 seconds

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Tests Results

SIZE MATTERS!

1. When cutting a string from the left (anchor "^") the performance degrades - even if the result is the same. This

degradation seems to scale in a linear way with the input string size.

To give an analogy: Imagine eating a hot dog.

It is fast to take a bite when the hotdog is 10 cm long (~4 in).

It is way slower to take the same bite when the hot dog is 50 cm long (~20 in).

2. This performance degradation does not happen for CLOBs.

Analogy: If the hot dog is in an open bun then bite speed depends on hot dog length, but not if the hot dog is in a closed

bun (french hot dog).

Both measurements combined give a surprising break even point. Left anchored clob expressions outperform varchar2

expressions somewhere before 1000 characters.

3. When cutting a string from the right (anchor "$") the performance degrades too but much faster. It seems to scale in a

polynomial or exponential way with the string size.

4. This right anchored performance degradation also happens for CLOBs. And is even worse there!

>>1 bite fast 1 bite slow

© SYNTEGRIS INFORMATION SOLUTIONS GMBH

Conclusion

ARE REGULAR EXPRESSIONS SLOW?

• Simple expressions are very very fast
(a few micro seconds)

Everybody says that.

Is this is fact?

Is it a myth?

How slow?

What are the

dangerous

expressions?

• Be aware of excessive backtracking!

• Input string size is relevant

• avoid greedy, use “not so” greedy quantifiers

• left anchored expressions are good

